

CompTIA Cybersecurity Analyst (CySA+) Certification Exam Objectives

EXAM NUMBER: CSO-002

About the Exam

Candidates are encouraged to use this document to help prepare for the CompTIA Cybersecurity Analyst (CySA+) CSO-002 certification exam. With the end goal of proactively defending and continuously improving the security of an organization, CySA+ will verify the successful candidate has the knowledge and skills required to:

- · Leverage intelligence and threat detection techniques
- Analyze and interpret data
- · Identify and address vulnerabilities
- Suggest preventative measures
- Effectively respond to and recover from incidents

This is equivalent to 4 years of hands-on experience in a technical cybersecurity job role.

These content examples are meant to clarify the test objectives and should not be construed as a comprehensive listing of all the content of this examination.

EXAM DEVELOPMENT

CompTIA exams result from subject matter expert workshops and industry-wide survey results regarding the skills and knowledge required of an IT professional.

COMPTIA AUTHORIZED MATERIALS USE POLICY

CompTIA Certifications, LLC is not affiliated with and does not authorize, endorse or condone utilizing any content provided by unauthorized third-party training sites (aka "brain dumps"). Individuals who utilize such materials in preparation for any CompTIA examination will have their certifications revoked and be suspended from future testing in accordance with the CompTIA Candidate Agreement. In an effort to more clearly communicate CompTIA's exam policies on use of unauthorized study materials, CompTIA directs all certification candidates to the CompTIA Certification Exam Policies. Please review all CompTIA policies before beginning the study process for any CompTIA exam. Candidates will be required to abide by the CompTIA Candidate Agreement. If a candidate has a question as to whether study materials are considered unauthorized (aka "brain dumps"), he/she should contact CompTIA at examsecurity@comptia.org to confirm.

PLEASE NOTE

The lists of examples provided in bulleted format are not exhaustive lists. Other examples of technologies, processes, or tasks pertaining to each objective may also be included on the exam although not listed or covered in this objectives document. CompTIA is constantly reviewing the content of our exams and updating test questions to be sure our exams are current and the security of the questions is protected. When necessary, we will publish updated exams based on testing exam objectives. Please know that all related exam preparation materials will still be valid.

TEST DETAILS

Required exam CSo-002

Number of questions Maximum of 85

Type of questions Multiple choice and performance-based

Length of test 165 minutes

Recommended experience • 4 years of hands-on experience in a technical cybersecurity job role

• Security+ and Network+, or equivalent knowledge and experience

Passing score 750

EXAM OBJECTIVES (DOMAINS)

The table below lists the domains measured by this examination and the extent to which they are represented.

DOMAIN	PERCENTAGE OF EXAMINATION
1.0 Threat and Vulnerability Management	22%
2.0 Software and Systems Security	18%
3.0 Security Operations and Monitoring	25%
4.0 Incident Response	22%
5.0 Compliance and Assessment	13%
Total	100%

1.0 Threat and Vulnerability Management

- Explain the importance of threat data and intelligence.
 - Intelligence sources
 - Open-source intelligence
 - Proprietary/closed-source intelligence
 - Timeliness
 - Relevancy
 - Accuracy
 - · Confidence levels
 - · Indicator management
 - Structured Threat Information eXpression (STIX)
 - Trusted Automated eXchange of Indicator Information (TAXII)
 - OpenIoC

- Threat classification
 - Known threat vs. unknown threat
 - Zero-day
 - Advanced persistent threat
- Threat actors
 - Nation-state
 - Hacktivist
 - Organized crime
 - Insider threat
 - Intentional
 - Unintentional
- Intelligence cycle
 - Requirements

- Collection
- Analysis
- Dissemination
- Feedback
- · Commodity malware
- Information sharing and analysis communities
 - Healthcare
 - Financial
 - Aviation
 - Government
 - Critical infrastructure

Given a scenario, utilize threat intelligence to support organizational security.

- Attack frameworks
 - MITRE ATT&CK
 - The Diamond Model of Intrusion Analysis
 - Kill chain
- Threat research
 - Reputational
 - Behavioral
 - Indicator of compromise (IoC)

- Common vulnerability scoring system (CVSS)
- · Threat modeling methodologies
 - Adversary capability
 - Total attack surface
 - Attack vector
 - Impact
 - Likelihood

- Threat intelligence sharing with supported functions
 - Incident response
 - Vulnerability management
 - Risk management
 - Security engineering
 - Detection and monitoring

1.0 Threat and Vulnerability Management

Given a scenario, perform vulnerability management activities.

- · Vulnerability identification
 - Asset criticality
 - Active vs. passive scanning
 - Mapping/enumeration
- Validation
 - True positive
 - False positive
 - True negative
 - False negative
- · Remediation/mitigation
 - Configuration baseline
 - Patching
 - Hardening
 - Compensating controls

- Risk acceptance
- Verification of mitigation
- · Scanning parameters and criteria
 - Risks associated with scanning activities
 - Vulnerability feed
 - Scope
 - Credentialed vs. non-credentialed
 - Server-based vs. agent-based
 - Internal vs. external
 - Special considerations
 - Types of data
 - Technical constraints
 - Workflow

- Sensitivity levels
- Regulatory requirements
- Segmentation
- Intrusion prevention system (IPS), intrusion detection system (IDS), and firewall settings
- · Inhibitors to remediation
 - Memorandum of understanding (MOU)
 - Service-level agreement (SLA)
 - Organizational governance
 - Business process interruption
 - Degrading functionality
 - Legacy systems
 - Proprietary systems

Given a scenario, analyze the output from common vulnerability assessment tools.

- Web application scanner
 - OWASP Zed Attack Proxy (ZAP)
 - Burp suite
 - Nikto
 - Arachni
- Infrastructure vulnerability scanner
 - Nessus
 - OpenVAS
 - Qualys

- · Software assessment tools and techniques
 - Static analysis
 - Dynamic analysis
 - Reverse engineering
 - Fuzzing
- Enumeration
 - Nmap
 - hping
 - Active vs. passive
 - Responder

- · Wireless assessment tools
 - Aircrack-ng
 - Reaver
 - oclHashcat
- · Cloud infrastructure assessment tools
 - ScoutSuite
 - Prowler
 - Pacu

Explain the threats and vulnerabilities associated with specialized technology.

- Mobile
- Internet of Things (IoT)
- Embedded
- Real-time operating system (RTOS)
- System-on-Chip (SoC)
- · Field programmable gate array (FPGA)
- · Physical access control
- Building automation systems
- Vehicles and drones
 - CAN bus
- · Workflow and process automation systems
- · Industrial control system

- Supervisory control and data acquisition (SCADA)
 - Modbus

1.0 Threat and Vulnerability Management

Explain the threats and vulnerabilities associated with operating in the cloud.

- Cloud service models
 - Software as a Service (SaaS)
 - Platform as a Service (PaaS)
 - Infrastructure as a Service (IaaS)
- · Cloud deployment models
 - Public
 - Private

- Community
- Hybrid
- Function as a Service (FaaS)/ serverless architecture
- Infrastructure as code (IaC)
- Insecure application programming interface (API)
- · Improper key management
- Unprotected storage
- · Logging and monitoring
 - Insufficient logging and monitoring
 - Inability to access

Given a scenario, implement controls to mitigate attacks and software vulnerabilities.

- Attack types
 - Extensible markup language (XML) attack
 - Structured query language (SQL) injection
 - Overflow attack
 - Buffer
 - Integer
 - Heap
 - Remote code execution
 - Directory traversal
 - Privilege escalation

- Password spraying
- Credential stuffing
- Impersonation
- On-path attack (previously known as man-in-the-middle attack)
- Session hijacking
- Rootkit
- Cross-site scripting
 - Reflected
 - Persistent
 - Document object model (DOM)

Vulnerabilities

- Improper error handling
- Dereferencing
- Insecure object reference
- Race condition
- Broken authentication
- Sensitive data exposure
- Insecure components
- Insufficient logging and monitoring
- Weak or default configurations
- Use of insecure functions
 - strcpy

2.0 Software and Systems Security

- Given a scenario, apply security solutions for infrastructure management.
 - · Cloud vs. on-premises
 - Asset management
 - Asset tagging
 - Segmentation
 - Physical
 - Virtual
 - Jumpbox
 - System isolation
 - Air gap
 - · Network architecture
 - Physical
 - Software-defined

- Virtual private cloud (VPC)
- Virtual private network (VPN)
- Serverless
- · Change management
- Virtualization
 - Virtual desktop infrastructure (VDI)
- Containerization
- · Identity and access management
 - Privilege management
 - Multifactor authentication (MFA)
 - Single sign-on (SSO)
 - Federation

- Role-based
- Attribute-based
- Mandatory
- Manual review
- Cloud access security broker (CASB)
- Honeypot
- · Monitoring and logging
- Encryption
- · Certificate management
- Active defense

Explain software assurance best practices.

- Platforms
 - Mobile
 - Web application
 - Client/server
 - Embedded
 - System-on-chip (SoC)
 - Firmware
- Software development life cycle (SDLC) integration
- DevSecOps
- · Software assessment methods

- User acceptance testing
- Stress test application
- Security regression testing
- Code review
- Secure coding best practices
 - Input validation
 - Output encoding
 - Session management
 - Authentication
 - Data protection
 - Parameterized queries

- · Static analysis tools
- Dynamic analysis tools
- Formal methods for verification of critical software
- Service-oriented architecture
 - Security Assertions
 Markup Language (SAML)
 - Simple Object Access Protocol (SOAP)
 - Representational State Transfer (REST)
 - Microservices

Explain hardware assurance best practices.

- · Hardware root of trust
 - Trusted platform module (TPM)
 - Hardware security module (HSM)
- eFuse
- Unified Extensible Firmware Interface (UEFI)
- Trusted foundry
- Secure processing
 - Trusted execution
 - Secure enclave
 - Processor security extensions
 - Atomic execution

- · Anti-tamper
- · Self-encrypting drive
- Trusted firmware updates
- · Measured boot and attestation
- Bus encryption

·3.0 Security Operations and Monitoring

Given a scenario, analyze data as part of security monitoring activities.

- Heuristics
- · Trend analysis
- Endpoint
 - Malware
 - Reverse engineering
 - Memory
 - System and application behavior
 - Known-good behavior
 - Anomalous behavior
 - Exploit techniques
 - File system
 - User and entity behavior analytics (UEBA)
- Network
 - Uniform Resource Locator (URL) and domain name system (DNS) analysis
 - Domain generation algorithm
 - Flow analysis
 - Packet and protocol analysis
 - Malware

- · Log review
 - Event logs
 - Syslog
 - Firewall logs
 - Web application firewall (WAF)
 - Proxy
 - Intrusion detection system (IDS)/ Intrusion prevention system (IPS)
- · Impact analysis
 - Organization impact
 - vs. localized impact
 - Immediate vs. total
- Security information and event management (SIEM) review
 - Rule writing
 - Known-bad Internet protocol (IP)
 - Dashboard
- Query writing
 - String search
 - Script
 - Piping

- · E-mail analysis
 - Malicious payload
 - Domain Keys Identified Mail (DKIM)
 - Domain-based Message Authentication, Reporting, and Conformance (DMARC)
 - Sender Policy Framework (SPF)
 - Phishing
 - Forwarding
 - Digital signature
 - E-mail signature block
 - Embedded links
 - Impersonation
 - Header

Given a scenario, implement configuration changes to existing controls to improve security.

- Permissions
- Allow list (previously known as whitelisting)
- Blocklist (previously known as blacklisting)
- Firewal
- Intrusion prevention system (IPS) rules
- Data loss prevention (DLP)
- · Endpoint detection and response (EDR)
- Network access control (NAC)
- Sinkholing
- Malware signatures
 - Development/rule writing
- Sandboxing

Port security

3.0 Security Operations and Monitoring

Explain the importance of proactive threat hunting.

- Establishing a hypothesis
- Profiling threat actors and activities
- Threat hunting tactics
 - Executable process analysis
- · Reducing the attack surface area
- Bundling critical assets
- Attack vectors
- Integrated intelligence
- · Improving detection capabilities

Compare and contrast automation concepts and technologies.

- Workflow orchestration
 - Security Orchestration, Automation, and Response (SOAR)
- Scripting
- Application programming interface (API) integration
- Automated malware signature creation
- Data enrichment
- Threat feed combination
- Machine learning
- Use of automation protocols and standards
 - Security Content Automation Protocol (SCAP)
- Continuous integration

• Continuous deployment/delivery

·4.0 Incident Response

- Explain the importance of the incident response process.
 - · Communication plan
 - Limiting communication to trusted parties
 - Disclosing based on regulatory/ legislative requirements
 - Preventing inadvertent release of information
 - Using a secure method of communication
 - Reporting requirements

- Response coordination with relevant entities
 - Legal
 - Human resources
 - Public relations
 - Internal and external
 - Law enforcement
 - Senior leadership
 - Regulatory bodies

- · Factors contributing to data criticality
 - Personally identifiable information (PII)
 - Personal health information (PHI)
 - Sensitive personal information (SPI)
 - High value asset
 - Financial information
 - Intellectual property
 - Corporate information

Given a scenario, apply the appropriate incident response procedure.

- Preparation
 - Training
 - Testing
 - Documentation of procedures
- · Detection and analysis
 - Characteristics contributing to severity level classification
 - Downtime
 - Recovery time
 - Data integrity
 - Economic
 - System process criticality
 - Reverse engineering
 - Data correlation
- Containment
 - Segmentation

- Isolation
- · Eradication and recovery
 - Vulnerability mitigation
 - Sanitization
 - Reconstruction/reimaging
 - Secure disposal
 - Patching
 - Restoration of permissions
 - Reconstitution of resources
 - Restoration of capabilities and services
 - Verification of logging/ communication to
 - security monitoring
- Post-incident activities
 - Evidence retention

- Lessons learned report
- Change control process
- Incident response plan update
- Incident summary report
- IoC generation
- Monitoring

Given an incident, analyze potential indicators of compromise.

- Network-related
 - Bandwidth consumption
 - Beaconing
 - Irregular peer-to-peer communication
 - Rogue device on the network
 - Scan/sweep
 - Unusual traffic spike
 - Common protocol over non-standard port
- · Host-related
 - Processor consumption

- Memory consumption
- Drive capacity consumption
- Unauthorized software
- Malicious process
- Unauthorized change
- Unauthorized privilege
- Data exfiltration
- Abnormal OS process behavior
- File system change or anomaly
- Registry change or anomaly
- Unauthorized scheduled task

· Application-related

- Anomalous activity
- Introduction of new accounts
- Unexpected output
- Unexpected outbound communication
- Service interruption
- Application log

Given a scenario, utilize basic digital forensics techniques.

- Network
 - Wireshark
 - tcpdump
- Endpoint
 - Disk
 - Memory
- Mobile
- · Cloud

- Virtualization
- · Legal hold
- Procedures
- Hashing
 - Changes to binaries
- Carving
- Data acquisition

5.0 Compliance and Assessment

- 5-1 Understand the importance of data privacy and protection.
 - Privacy vs. security
 - · Non-technical controls
 - Classification
 - Ownership
 - Retention
 - Data types
 - Retention standards
 - Confidentiality

- Legal requirements
- Data sovereignty
- Data minimization
- Purpose limitation
- Non-disclosure agreement (NDA)
- · Technical controls
 - Encryption
 - Data loss prevention (DLP)

- Data masking
- Deidentification
- Tokenization
- Digital rights management (DRM)
 - Watermarking
- Geographic access requirements
- Access controls
- Given a scenario, apply security concepts in support of organizational risk mitigation.
 - · Business impact analysis
 - Risk identification process
 - Risk calculation
 - Probability
 - Magnitude
 - Communication of risk factors
 - Risk prioritization
 - Security controls
 - Engineering tradeoffs
 - Systems assessment

- · Documented compensating controls
- Training and exercises
 - Red team
 - Blue team
 - White team
 - Tabletop exercise
- · Supply chain assessment
 - Vendor due diligence
 - Hardware source authenticity
- Explain the importance of frameworks, policies, procedures, and controls.
 - Frameworks
 - Risk-based
 - Prescriptive
 - · Policies and procedures
 - Code of conduct/ethics
 - Acceptable use policy (AUP)
 - Password policy
 - Data ownership

- Data retention
- Account management
- Continuous monitoring
- Work product retention
- Control types
 - Managerial
 - Operational
 - Technical

- Preventative
- Detective
- Responsive
- Corrective
- · Audits and assessments
 - Regulatory
 - Compliance

CompTIA Cybersecurity Analyst (CySA+) Acronym List

The following is a list of acronyms that appear on the CompTIA CySA+ exam. Candidates are encouraged to review the complete list and attain a working knowledge of all listed acronyms as a part of a comprehensive exam preparation program.

ACRONYM	SPELLED OUT	ACRONYM	SPELLED OUT
3DES	Triple Data Encryption Algorithm	DOM	Document Object Model
ACL	Access Control List	DRM	Digital Rights Management
AES	Advanced Encryption Standard	EDR	Endpoint Detection and Response
API	Application Programming Interface	ELK	Elasticsearch, Logstash, Kibana
ARP	Address Resolution Protocol	ERP	Enterprise Resource Planning
APT	Advanced Persistent Threat	FaaS	Function as a Service
ATT&CK	Adversarial Tactics, Techniques,	FPGA	Field-programmable Gate Array
	and Common Knowledge	FTK	Forensic Toolkit
AUP	Acceptable Use Policy	FTP	File Transfer Protocol
BEC	Business Email Compromise	HIDS	Host Intrusion Detection System
BYOD	Bring Your Own Device	HIPS	Host-based Intrusion Prevention System
CA	Certificate Authority	HSM	Hardware Security Module
CAN	Controller Area Network	HSTS	HTTP Strict Transport Security
CASB	Cloud Access Security Broker	HTML	Hypertext Markup Language
CI/CD	Continuous Integration/Continuous Delivery	HTTP	Hypertext Transfer Protocol
CIS	Center for Internet Security	HTTPS	Hypertext Transfer Protocol Secure
COBIT	Control Objectives for	IaaS	Infrastructure as a Service
	Information and Related Technology	IaC	Infrastructure as Code
CPU	Central Processing Unit	ICMP	Internet Control Message Protocol
CRM	Customer Relations Management	ICS	Industrial Control System
CSRF	Cross-Site Request Forgery	IDE	Integrated Development Environments
CVE	Common Vulnerabilities and Exploits	IDS	Intrusion Detection System
CVSS	Common Vulnerability Scoring System	IMAP	Internet Message Access Protocol
DoS	Denial of Service	IoC	Indicator of Compromise
DDoS	Distributed Denial of Service	IoT	Internet of Things
DGA	Domain Generation Algorithm	IP	Internet Protocol
DHCP	Dynamic Host Configuration Protocol	IPS	Intrusion Prevention System
DKIM	Domain Keys Identified Mail	IPSec	Internet Protocol Security
DLP	Data Loss Prevention	ISAC	Information Sharing and Analysis Center
DMARC	Domain-based Message	ISO	International Organization for Standardization
	Authentication, Reporting, and Conformance	ITIL	Information Technology Infrastructure Library
DMZ	Demilitarized Zone	LAN	Local Area Network
DNS	Domain Name System	LDAP	Lightweight Directory Access Protocol
DNSSEC	Domain Name System Security Extensions	MaaS	Monitoring as a Service

ACRONYM	SPELLED OUT	ACRONYM	SPELLED OUT
MAC	Mandatory Access Control	SOAP	Simple Object Access Protocol
MD5	Message Digest 5	SOAR	Security Orchestration, Automation, and Response
MDM	Mobile Device Management	SOC	Security Operations Center
MFA	Multifactor Authentication	SoC	System on Chip
MOA	Memorandum of Agreement	SPF	Sender Policy Framework
MOU	Memorandum of Understanding	SPI	Sensitive Personal Information
MRTG	Multi Router Traffic Grapher	SQL	Structured Query Language
MySQL	My Structured Query Language	SSH	Secure Shell
NAC	Network Access Control	SSHD	Solid-state Hybrid Drive
NAS	Network-attached Storage	SSID	Service Set Identifier
NAT	Network Address Translation	SSL	Secure Sockets Layer
NDA	Non-disclosure Agreement	SSO	Single Sign-on
NIC	Network Interface Card	STIX	Structured Threat Information eXpression
NIDS	Network Intrusion Detection Systems	TACACS+	Terminal Access Controller
NIST	National Institute of Standards and Technology		Access Control System Plus
OEM	Original Equipment Manufacturer	TAXII	Trusted Automated eXchange of
OS	Operating System		Intelligence Information
OSSIM	Open Source Security Information Management	TCP	Transmission Control Protocol
OVAL	Open Vulnerability and Assessment Language	TFTP	Trivial File Transfer Protocol
OWASP	Open Web Application Security Project	TLS	Transport Layer Security
PaaS	Platform as a Service	TPM	Trusted Platform Module
PAM	Pluggable Authentication Module	TTP	Tactics, Techniques, and Procedures
PCAP	Packet Capture	UDP	User Datagram Protocol
PCI	Payment Card Industry	UEBA	User and Entity Behavior Analytics
PHI	Personal Health Information	UEFI	Unified Extensible Firmware Interface
PID	Process Identification Number	UEM	Unified Endpoint Management
PII	Personally Identifiable Information	URL	Uniform Resource Locator
PKI	Public Key Infrastructure	USB	Universal Serial Bus
RADIUS	Remote Authentication Dial-in User Service	UTM	Unified Threat Management
RAM	Random Access Memory	VDI	Virtual Desktop Infrastructure
RDP	Remote Desktop Protocol	VLAN	Virtual Local Area Network
REST	Representational State Transfer	VoIP	Voice over Internet Protocol
RTOS	Real-time Operating System	VPC	Virtual Private Cloud
SaaS	Software as a Service	VPN	Virtual Private Network
SAML	Security Assertions Markup Language	WAF	Web Application Firewall
SCADA	Supervisory Control and Data Acquisition	WAN	Wide Area Network
SCAP	Security Content Automation Protocol	XML	Extensible Markup Language
SDLC	Software Development Life Cycle	XSS	Cross-site Scripting
SED	Secure Encryption Device	ZAP	Zed Attack Proxy
SFTP	SSH File Transfer Protocol		
SHA	Secure Hash Algorithm		
SIEM	Security Information and Event Management		
SLA	Service Level Agreement		
SMB	Server Message Block		
SMS	Short Message Service		
CMID	Cimple Mail Transfer Drotocol		

Simple Mail Transfer Protocol

SMTP

CySA+ Proposed Hardware and Software List

CompTIA has included this sample list of hardware and software to assist candidates as they prepare for the CySA+ exam. This list may also be helpful for training companies that wish to create a lab component for their training offering. The bulleted lists below each topic are samples and are not exhaustive.

IT HARDWARE

- Workstation (or laptop) with ability to run VM
- Managed switch
- Firewall
- Mobile phones
- VoIP Phone
- WAP
- IDS/ IPS
- IoT Devices
- Servers

SOFTWARE

- · VM images for attack targets
- Windows Server
- Windows Client
 - Commando VM
- Linux
 - Kali
 - ParrotOS
 - Security Onion
- Chrome OS
- UTM Appliance
- pfSense
- Metasploitable

- · Access to cloud instances
 - Azure
 - AWS
 - GCP
- SIEM • Graylog
 - ELK
 - Splunk
- Vulnerability scanner
 - OpenVAS
 - Nessus

